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Abstract. Explicit path integration is carried out in a space with a ring-shaped topological defect 
using toroidal coordinates. The toroidal Ahamnov-Eohm experiment is taken as an example. 

1. Introduction 

The formulation of quantum mechanics in spaces with topological defects such as a 
punctured plane or a ring in three-dimensional space can have interesting applications in 
statistical mechanics for polymers [ 11, condensed matter physics and elementary particles 
[Z]. Certainly, Feynman’s path integral formalism 131 is a most convenient tool to use to 
treat this class of problems. Being a sum over all possible histones of the particle, it is 
naturally sensitive to such topological defects. 

An example which has received much attention in the literature [&7] is the punctured 
plane where the hole, or singularity, makes the physical space multiply connected. To deal 
with this, the propagator is expressed as a path integral in the covering space which is 
simply connected [ 5 ] .  The path integral in this case becomes a sum of partial propagators 
K.(r”, T‘; T), each corresponding to homotopically inequivalent paths winding n times 
around the singularity, i.e. 

This method has been applied to treat the Aharonov-Bohm (AB) [8] effect due to a solenoidal 
flux since the impenetrable solenoid in three-dimensional space, when symmetrically 
sectioned, leads to a singularity in a plane. 

Another example of interest is the torus-shaped topological defect (figure 1). Once again, 
the space is multiply connected, and trajectories going from the source S to a detector D, 
but with different windings around the torus, can no longer be deformed into others. Such 
paths belong to homotopically inequivalent classes. It is for this interesting case that a 
path-integral treatment is presented in this paper. In view of the geometry of the system, 
we use the toroidal coordinate system and find that the path integral can be evaluated by 
applying the technique of path-dependent time transformation [9] together with results of 
path integration over the SU(I,l) group manifold [lo]. 

As an application, we consider the toroidal AB [ I l l  effect. In contrast to the solenoidal 
AB effect, which has been plagued with flux leakage near the ends of the solenoid, the 

03OS.4470/94/248251+I~l9.S0 @ 1994 IOP Publishing Ltd 8251 



8252 R C Ramos Jr et ai 

I 

! S  

Figure 1. Paths with different winding number n are homotopically inequivalent. The limit, 
--f CO. corresponds to an infinitesimally thin ring of radius a.  

toroidal case gives a finite and closed geometry that effectively confines the flux. This was 
in fact applied by Tonomura eta! [ I  I ]  in the verification of the AB effect where a magnet of 
toroidal geometry, coated with a superconductor, was used to prevent electron penetration 
and flux leakage. To our knowledge, there has been no explicit formulation of the toroidal 
AB effect in  the path-integral formalism, and it is certainly worthwhile to look into this 
problem where the implications of (1.1) can further be explored. 

In the next section, we briefly review the toroidal coordinate system and express the free 
particle propagator in toroidal coordinates. In section 3, thecase with a ring-shaped defect is 
considered and the path integral is evaluated. In section 4, the energy Green function, which 
is the Fourier transform of the propagator, is evaluated in closed form. Section 5 discusses 
the interference pattern in the toroidal AB experiment where magnetic flux is confined in a 
ring. A summary of results and possible extensions are given in section 6. 

2. The propagator in toroidal coordinates 

In the toroidal coordinate system, a point is specified by the intersection of surfaces given 
by [12]: 

(i) q = qo (0 < q .c CO), which is a torus with the axial circle in the x-y plane and 
centred at the origin, of radius a coth 00 and circular cross section of radius a cosech 70. The 
limit q -P 00 corresponds to an infinitesimally thin ring of radius a, and q + 0 corresponds 
to the z-axis. 
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(ii) @ = @O (0 < 5 e 2n). which is that section of a spherical surface of radius a cosec to, 
centred at x = y = 0, z = a c o t t ~ , ,  that is above the x-y plane for the range 0 < $ e n;  
the rest of the same sphere and below the x-y plane for the range H c e e 2n. The part 
of the x-y plane outside the circle r = a ,  z = 0 corresponds to 5 = 0 or 2n; the rest of 
the x-y plane inside the circle corresponds to 5 = n. 

(iii) q5 = &a (0 < 4 e 2n), which is the usual azimuthal plane in the cylindrical 
coordinate system. 

From Cartesian coordinates, the transformation equations are 

a sinh q cos q5 a sinh q sin q5 
coshq -COS@ = coshq -cos@ . coshq-cosf‘  

as in@ 
x =  Z =  

The distance between two points in toroidal coordinates is given by 

ds’ = (h,dq)2 + (hf dt)’ + (h+ db)’ (2.2) 

where 

a a a sinh q 
h -  hf = h+ = ’ - cosh q - cos t  cosh q - cos < cosh q - cos e 
and the volume element is 

a3  sinhqdqde dq5 
d 3 r = h h h  d d ‘ ‘  ’ ed’= (coshq-cos@)” (2.4) 

To set up the propagator as a path integral in toroidal coordinates, we first consider a 
free particle of mass p.  In Feynman’s prescription, the propagator is given as the sum over 
all possible histones of the particle: 

where T‘ = ro; r“ = r N ;  7j = tj - ti-, = r / N  = (t” - t ‘ ) / N ,  and Sj is the short-time 
action for the free particle, 

From (2.2) and (2.3), the short-time action (2.6) can be written in the form 

S.  - &[(Axj)’ +   AY^)^ + (AzJt21 
I - 2 s  

- Pa’ - 
(coshq, - co~@j)(cosh q j - ~  - C O S @ ~ - I ) ~ ~  

x (cosh qj cosh qj-1 - sinh qj sinh qj-, cos A4j - cos Ab) .  
(2.7) 

With the propagator in toroidal coordinates, (2.5) and (2.7), we next consider the presence 
of a ring-shaped defect in three-dimensional space. 



8254 R C Ranios Jr et a1 

3. Particle in regions with a ring-shaped defect 

An impenetrable ring in three-dimensional space can be described by a toroidal surface 
q = 6 = constant. In this space, various paths of the particle going from an initial point T' 

to a point 7'' become homotopically inequivalent and are characterized by different winding 
numbers n. The propagator (2.5) is expressed as in (l.l), with the short-time action (2.7) 
modified to 

where the term Sf takes into account the ring's impenetrability. This constraint action wipes 
out the propagator for the particle hitting the impenetrable ring barrier. Clearly, 

where e(( - q j )  is a step function with values of unity for q j  c 
zero for qj 

From (2.5), (2.7) and (3.2), we have 

(outside the ring) and 

Let us next consider the case of the particle propagator for winding number n = 0. 
i j  (inside the ring). 

'/' N-l u3 sinh qj dqj dej d$, 
exp -So e ( $ -  vi) - Kn=o(r", r'; 5 )  = N - X C  lim ./fi ,=I (I J ,  ( 2 2 ~ j )  j = l  (coshqj   COS^^)^ 

(3.3) 

where 

x (cosh qj cosh vj-1 - sinh qj sinh qj-1 cos A$j - cos Aej). (3.4) 

We are now set to perform integration over 5 ,  4 and q. 

3.1. Integrating the e-part 

To integrate the angle .$, we first apply in Ko=o(r", T ' ;  T) a local time rescaling 191 (see 
appendix 1) of the form 

~j = rI(Coshqj - c o ~ ~ j ) ( c o s h ~ j - ~  -cos<~-I) (3.5) 

resulting in the equivalent path integral 

r 312 K,,o(T", T'; U )  = [(cosh q" - cosf")(coshq' - COS5 )I 

(3.6) 
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where 
a' Sj 0 -  - -(coshqjcoshqj-, !J -sinhqjsinhqj-~cosA@~ (3.7) 

A Taylor series expansion of cos A$j in (3.7) is then performed up to the fourth-order term: 

Note that [(Ati)4/aj] = O(uj), and hence still contributes significantly to the path integral. 
Once exponentiated within the path integral, this term can be handled using the formula 
[I31 

exp(-ax2 + ox4) dx = Sm exp ( -axz + E) 4a2 dx (3.9) 
-m 

valid for Rea > 0, la1 large, which can be satisfied by adding a small imaginary mass f i  
to f i  in sj'. The limit f i  + 0 is then taken after the calculations. This leads to 

K , a ( r " ,  r'; a) = [(cosh q" - cost")(cosh q' - cos t )] I 3/2 

ipa2 
h U j  

- -(1 - cosh q j  cosh qj-I + sinh qj sinh qj-1 cos A&) + 

(3.10) 

The $-angular path integral can be extracted from (3.10) and is of the form 
1/2 N-I 

At($", $'; a) = lim (3.11) 
N-CC 

where Sj($) = (fiaz/20j)(A$j)z. Observing that (3.11) is similar in form to the Gaussian 
path integral for a free particle along the $-coordinate, integration is readily performed, to 
yield 

(3.12) 

With (3.12), equation (3.10) can be written as 

where 
K d r " ,  T'; a) = Ac(t", 5'; a)Q(q",#", q', 4': a )  (3.13) 

Q(q",4",q', @';U) = -[(coshq"-cos$")(coshq'-~~~$ 2R I )] 312 
a 

(3.14) 
and 

sj(Vt#) 

This brings us to path integration of the q- and #-variables. 

(3.15) 
hZoj Fa2 -- (1 - cosh qj cosh qj-I + sinh q j  sinh 8 - 1  cos A&). 

ai 



8256 R C Rames Jr  et 

3.2. Integrating the $-part 

To facilitate integration over $j.  we use the relation 

m 

exp(i cos A$,) = 1 exp(im,A$j)Zm, ( z )  
m,=-m 

(3.16) 

in which the large argument asymptotic expansion of the modified Bessel function of the first 
kind, Im(z) ,  can be applied with z = -(ipa2/huj)sinhq,sinh?jj-l, U, -+ 0 as N -+ CO. 

Substitution gives 

2 H  Q(q".$", q ' , r $ ' ; ~ )  = a [ ( C O S h q f ' - C O S 5 " ) ( C O S h ? ' -   COS(')]'/^ 

ipa2 (m; - $raj 

ho; 
+ -(cosh qj cosh qj-I - sinh q, sinh 771-1) + , 2ipa2 sinh 'I/ sinh qj-1 

(3.17) 

With the above result, the $-angular part can now be readily integrated, using 

(3.18) 

which yields 

(3.19) 

At this point, only the ?-part remains to be path integrated. 
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3.3. Integrating the q-part 

Taking uj + -uj and rearranging terms in the last expression, (3.19) can bc rewritten as 

CO 

x exp[im($" - 401k(q", q'; U )  
m=-m 

where f ( q " ,  0'; U )  is a one-dimensional path integral in q given by 

(3.20) 

with the short-time action 

A further simplification can be achieved by using the relations 

cosh Aqj = 4 c o ~ h  -3 

(3.22) 

(3.23) 

and 

-hoj(m'-i) -hu,(m2 - 7) 1 hUj(7n* - $) 
- 

2 i p 2  sinh qj sinh vj-1 8i1.d sinh(q,j/Z) sinh(qJ-1/2) + 8 i p z  cosh(qj/2) c0sh(q~-~/2) ' 

(3.24) 

Note that in (3.241, terms of order U ' + ~ ( E  > 0) have been dropped, making no significant 
contribution to the path integral. Again, the fourth-order term in (3.23) can be handled 
within the path integral by using (3.9), i.e. the equivalent action, when exponentiated in the 
path integral, becomes 

huj(m2 - $) 
32ba2 8 i p 2  sinh(rlj/2) sinh(q,-l /2) 

hu,(m2 - a) 
8ipu2 cosh(qj/2) c0sh(q~-~/2) + 

The propagator J?(q", 7'; U )  in (3.21) can now be written as 

(3.25) 
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where 
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~ 4pa2 (1 - cosh - ""> 2 
sj = - 

uj 

2 1  ,2 - L m - 3  
sinh(qj/2) sinh(qj-1/2) cosh(qj/2) cosh(qj-1/2) 

4 - 

(3.27) 

Equation (3.26), with (3.27), is formally identical to the propagator of the one- 
dimensional modified Poschl-Teller oscillator whose path integral, although non-Gaussian 
in form, has been evaluated through the application of group theory [lo]. The procedure 
takes advantage of the dynamical symmeby of the associated Lagrangian and consists 
of expanding the short-time propagator in matrix elements of the unitary irreducible 
representations (UIRS) of the symmehy group (SU(1,l) in this case). By identifying the 
coordinates with the group parameters, the path integral is transformed into an integral over 
the SU(I. 1) group manifold-which is then simply canied out using the orthogonality of the 
representations (see appendix 2). The result of this procedure gives for Q(q", @"; q', @'; U )  

in (3.20) the expression 

(3.28) 

where, dj;bh(q) are the Bargmann functions [14]. Note that, in carrying out the integration 
using the orthogonality relation (A2.10) of the Bargmann functions, we take the ring to be 
infinitesimally thin, i.e. 0 --t 03, in (3.2). Using these results, we now write (3.13) as 

[(cosh 7'' - cos~")(coSh q' -  COS^')]'/^ 
Kn=0(T", r'; U )  = 4xa2 

Here, we have transformed back to CT + -U. 

The replacement of (5'' - f') by (5" - 5' + 2xn) in (3.29) gives the nth winding 
propagator. From (l.l), all such propagators corresponding to winding number n must be 
summed to give the total propagator: 
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(3.30) 

Here, the winding number n signifies, if positive, a particle's path that first goes inside the 
ring and then loops n times around it; and, if negative, a path that first passes outside the 
ring and then loops In1 - 1 times (see figure 1). For instance, the winding numbers n = -1 
and n = 0 correspond to paths passing outside and inside the ring, respectively, but with 
no winding. We note that if the ring radius goes to infinity, a ring solenoid becomes a 
cylinder in three-dimensional space. When symmetrically sectioned, the cylinder leads to 
a singularity in a plane previously discussed using polar coordinates [4-71 where the polar 
angle 0 (0 < 0 e 2n) replaces the role of the periodic < variable (0 < < e 2n) in toroidal 
coordinates. 

The full propagator can also be put in another convenient form after noticing that the 
last two factors in (3.30) can be expressed as an integral in a parameter y (-m c y e m), 

1 
= - /"- dy exp [iy(e" -e' + 2nn) - - 

2x0 -m 
(3.31) 

leading to 

[(cosh q" - cosP")(cosh q' -  COS<')]^/^ 
8n2a3 

m m  
K ( r " ,  7.'; U) = exp[im(@" -@')I 

n=-m m=-m 

x exp[iy(c" - 6' + 2nn)l exp [ ((" iiiT ") h'u] . (3.32) 

Equation (3.32), which is a winding number representation of the total propagator, can 
further be recast using Poisson's sum formula, 

m m 
exp(2xiny) = ~ ( y  - s) 

n=-m r=--m 

where the propagator becomes 

[(cosh rf' - cos c")(cosh q' - cos 5')]3/z 
8x2a3 

m m  
exp[im(@" - $91 K(r",r':u) = 

m=-m r=-m 

(3.33) 

m 
dy S(y - s) exp[iy(c" - t')] exp 

(3.34) 
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With the &function, the y-integration can be canied out, and the propagator can be written 
in the form 

R C R a m s  Jr et a1 

(3.35) 

where * ( a ,  e ,  Qj) is given by 

Note that the propagator given in (3.35) is parametrized by the rescaled time U related to I 
as given by (4.2). It would then be convenient io consider the energy Green function. 

4. The energy Green function 

The energy Green function is obtained as the Fourier transform of the propagator 

G(T", T';  E )  = (%)-I K(T",  T'; z)exp(iEr/fi)ds 

m 

= (*)-I I exp[iEu/h(coshq" - cosc")(coshq' - cos$-')] 

x K(T", T ' ;  u)(dr/do) do (4.1 ) 

in which the global rescaled time for the case being considered is given by 

U = r(cosh~"-cos~")(cosh~'-cosg'). (4.2) 

Integration over U yields 

where, with (3.32), we have 

) +ic]-' . (cosh a' -COS C')h 
y z +  &)(coshq"-cosc") 

2pa2 8'0 

(4.4) 
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This gives the Green function in closed form for a particle moving in a region with a ring- 
shaped toplogical defect. An alternative form can also he obtained by again using (3.33), 
which allows one to integrate y ,  This yields 

5. Application: the toroidal Aharonov-Bohm effect 

For magnetic flux enclosed in a toroid, the vector potential A, in spherical coordinates, 
is an infinite series in Legendre functions. In contrast, the vector potential A in toroidal 
coordinates becomes quite simple, taking the form, A = (Q?o/Zn)Vc. Here, Q?o is the 
enclosed flux, and t is the coordinate associated with the spherical surfaces. The vector 
potential lines are in fact toroidal in form and orthogonal to the <-surfaces. This reminds us 
of the case of the solenoidal vecmr potential A = (@0/2n)Ve, where 0 is the polar angle. 

The corresponding short-time action can then be expressed as 

where g = e00/2nhc. Following the procedure discussed in section 3, the interaction term, 
when exponentiated with exp[(i/h)Sj], gives rise to the expression 

N 
nexp(igAej)  + exp[ig($" - t' + z l rn) ] .  (5.2) 
j =  I 

In (5.2), the winding number n comes from the replacement, 5'' - E' --f f "  - 6' + 2nn. 
Thus, the resulting propagator for the system with magnetic flux confined in a ring is 

[(coshq" - cos(")(cosh t]' - COS 
exp[im(@" - $91 

4naZ 
K(r", ?-';U) = 

n=-m m=-m 
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This can also be written in the same way as (3.32) as 

R C Ramos Jr et a1 

[(cosh q9 - cos$")(cosh 'I'   COS^')]^/^ 
8x203 

exp[im($" -$')I K(T",T';u) = 2 
n=-m m=-CO 

x exp[i(y + g)($" - t '+ 2nn)lexp [I - ( PZ y;: ") k"] . (5.4) 

It is also interesting to look at the interference terms associated with two electron paths 
characterized by different winding numbers n and I about the toroidal flux. The interference 
terms are given by 

x lm lm dp dp' 2p2p' tanh(rrp) tanh(xp') 

This shows that the interference terms are proportional to a flux-dependent factor, i.e. 

where we have defined, 
is given by 

KiK, + KTK, cc2cos{2~(1 -n)[g+ (~a2~/hr(coshq"-cos~")(coshq'-cos~'))]  

= (6'' - t' + x )  (see figure 1). In terms of r the last expression 

+ 2 n Z ~ a 2 ( 1  - n)(1 + n  + I)/hr(cosh q" - cost")(cosh q' - cose')). (5.7) 

The interference pattern in (5.7) depends on the following factors: the flux enclosed, 
the winding numbers, the size of the ring, as well as the 6'. q' and t", q" coordinates of 
the source and detector, respectively. For paths which do not wind around the toroid, e.g. 
for 1 = -1 and n = 0, what remains is the usual flux-dependent shift of the AB effect, i.e. 

(5.8) 

at = 0, where g = e@0/2zkc and CJO Is the magnetic flux. In addition, (5.7) contains the 
term (1 + n + l), dependent on higher winding numbers. This contribution disappears when 
l + n +  1 = 0, as in the case of 1 = 0, and n = - 1 (no winding), wherein the interference shift 
is due mainly to the usual AB effect. These shifts do not appear in present AB experiments, 
where apparently only electron paths with no winding are generated. Furthermore, once a 
summation over all n is performed to obtain the full propagator, the shifts for paths with 
higher winding numbers may be smeared out and consequently disappear. 

K:KI + K;Ko a cos(2rrg) 
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6. Conclusion 

In this paper, the toroidal path integral for a particle moving in a space with a ring-shaped 
topological defect has been evaluated in closed form. In this multiply connected space, 
the full propagator is taken as a sum of partial propagators corresponding to homotopically 
inequivalent paths characterized by the number of times they wind about the ring. The 
partial propagators were evaluated exactly with the aid of techniques used in handling 
non-Gaussian path integrals, namely local time rescaling and application of results of path 
integration over the SU(I.1) group manifold. Furthermore, the Fourier transform of the 
propagator yielded the energy Green function in closed form. 

As a first application, the problem of an electron path winding about an infinitesimally 
thin ring of magnetic flux was also considered. This corresponds to the Tonomura 
experiment [ I l l ,  which gave a definitive verification of the AB effect. The interference 
pattern was evaluated and found to consist of the usual flux-dependent AB shift and an 
additional purely topological phase dependent on the winding number and the size of the 
ring. This result has also been found in the case of the solenoidal AB effect. [7]. 

An extension of this work involves the explicit calculation of the scattering matrix for 
a particle in a region with confined toroidal flux using earlier methods [15]. This will be 
compared with other resuIts such as those of Lyuboshitz and Smorodinski [16] calculated 
using eikonal and Born approximations. It would also be interesting to find applications 
in the problem of electron transpon and localization in microscopic, quantum-mechanical 
structures [ 171. 
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Appendix 1 

The technique of local time rescaling wherein paths are reparametrized by a space-dependent 
time has been crucial in allowing the exact evaluation of various non-Gaussian path integrals. 
The mathematical basis for this has been given by Fischer, Leschke and Muller [9]. 
Discussions and applications of this technique abound in recent literature [IS]. 

The equivalence of local time rescaling to transformations applied to the Schriidinger 
equation to reduce it to a solvable form has also been discussed [19]. Consider the time- 
dependent Schrodinger equation 

[(-h2/2m)a,? + V ( X ,  r)]q(x, I)  = i m , q ( x ,  t )  (Al.1) 

which may not be in a duectly solvable form. Under an appropriate transformation, say 
x = f(z),  the wavefunction is taken in the form V ( x , t )  = g ( z ) F ( z , s )  such that F ( z , s )  
satisfies a separable solvable differential equation of the form 

[(-h2/2m)a: + Q ( z ,  S ) I F ( Z ,  s) = w,F(z , s ) .  (A1.2) 

The requirement imposed by (A1.2) gives g(z) = (df/dz)’’’ and s = r(df/dz)2. 
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We can thus find the correspondence of the path-integral solution presented in this paper 
and the free particle Schrodinger equation in toroidal coordinates given by 

where h(q, {) = a/(cosh q - cost) .  In analogy to the above procedure for reducing a 
differential equation into solvable form, the wavefunction is taken as 

‘JJ(q3f,,4,t) = (coshq - c o s O “ ~ F ( V , P ~ ~ , ~ )  (A1.4) 

where s = t(cosh q   COS^)^. Substitution in (A1.3) and straightforward simplification then 
yields the separable form 

where k: = 2mEs/h2, corresponding to (3a/as). The solution of (A1.3). obtained 
with the aid of (AIS), holds when the particle is outside the toroidal excluded region, and 
vanishes at the impenetrable toroidal boundary. 

Appendix 2 

Here we briefly present the key steps in transforming the propagator in (3.26) with the 
action (3.27) into the SU(1,l) path integral and its subsequent evaluation, The presentation 
follows the procedure given in the work of Bohm and Junker [lo]. 

Using the asymptotic formula valid for large t and integer s, 

exp ( -- (s22: ‘I) = (&)”’la exp[isy - E ( *  - cosy)]dy 

we can exponentiate the third and fourth terms of (3.27) such that 

1 -(mZ - i )huj  -(m2 - $)haj 
%paZ sinh(qj/Z) sinh(qj-lj2) + %paz cosh(qj/Z) cosh(q+l/2) 

= -[sinh(qj) w’ ~inh(qj-1)]”~ 
irfiUj 

(A2.1) 

x [ c o s h ( $ ) c o s h ( y ) c o s p j  - s i n h ( ~ ) s i n h ( y ) c o s o l j ] ]  dajdpj 

(A2.2) 
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The angles ai and p, may be cast in terms of Euler angles pj and $j as ai = S(Api - A@j) 
and B, = ~ ( A C O ,  +A@]), This leads to 

exp (h -Sj ) = - k.a2 (sinh qj sinhqj-1)1/2 
2Jrh"j 

(A2.3) 

where 

Qi - V i  . "i-1 A% + **j - - V j  . - qj-I  cos Apj -A$j 
2 2 2 2 2 2 2 '  

cosh - - cosh - cosh - COS 

Substituting back into (3.26) and taking p' = *' = 0, the following expression is obtained 

(sinh q"sinh q')'l2 
8a 

k(q", $0" @", q', 0,o; U )  = 

X /"" U(q", p", I)", q', 0, 0 u )  exp(imp") dp"d$" (A2.4) 

where 

(A2.5) 

(A2.6) 

The above result is just the path integral over the SU(1,l) group manifold isomorphic to 
a four-dimensional hyperboloid specified in terms of Eulerian angles. In this case, (A2.6) 
can be written as 

(A2.7) 

where iJ = g,:.,gj for SU(1,l) group elements in the spinor representation and (t,, i - 1 )  is 
the scalar product of unit vectors on the hyperboloid. Also, the associate invariant measure 
is given by dgj = (sinh qj dqj dqJ d+j/161r2). 

The subsequent evaluation of the path integral involves the expansion of the short-time 
propagator in matrix elements of UlRS of SU(1,l) given by the Bargmann Functions d:i (g) .  
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Appropriate to the problem considered in this paper is the fundamental continuous series 
with 

R C Ramos Jr er a1 

m =0 ,+1 ,+2 ,  ... :h=O 
I = - L + i p  2 (A2.8) 

where, furthermore, the series with h = 0 is taken since the azimuthal quantum number 
m = 0, i l ,  k 2 , .  . .. In addition, a = (m + m)/2 = m and b = (m - m ) / 2  = 0. Explicitly, 
the Bargmann functions 1141 are given in terms of the hypergeometric functions as 

2 

1 + m ;  -sinh* (A2.9) 

and satisfy the orthogonality relation 

The SU( 1,l)  propagator is then given by 

(sinh q" sinh q')1/2 p w  3A2 
2n %(7l", (p" *'I; r f .  0, 0 U )  = 

(A2.11) 

which leads to (3.28). 

References 

[I] Wiegel F W 1986 Introduction to Path lnregrnl Mcthods in Physics and Polymer Scicnce (Singapore: World 

[2] Wu Y S and Zee A 1989 Nuel. Phys. B 324 623 
Bernido C C 1993 J. Phys. A: Moth Gen. 26 5461; 1993 Vistar Astron. 37 613 

[3] Feynman R P 1948 Rev. Mod, Phys. 20 367 
Feynman R P and Hibbs A R 1965 Qlranrum Mechnnics and Path lntegruls (New York McGraw-Hill) 

[4] Edwards S F 1967 Proc. Phys. Soc. 91 513 
[5] Schulman L S 1981 Techniques andApplieotions of Park Inregotion (New York: Wiley) 
[6] Laidlaw M G and DeWttt C M 1971 Phys. Rev. D 3 1375 

Dowker J S 1972 J .  Phys. A: Gen. Phys. 5 936 
171 Bemido C C and lnomata A 1981 J .  Moth. Phyx 22 715; 1980 Phys. Lett. 77A 394 

Bernido C C, Carpio-Bernido M V and lnornata A 1989 Phys. Lett. 136A 259 
lnomata A and Singh V A 1978 3. Math. Phys. 19 2318 
Gerry C C and Singh V A 1979 Phys, Re,,. D 20 2550 
Ahamnov Y and Bohm D 1959 Phys. Rev. 115 485 
Fischer W, Leschke Hand Muller P 1992 J, Phys. A: Mark. Gen. 25 3835 
Castrigiano D P and Stak F 1989 J .  Marh. Phys. 30 2785 
Duru I H and Klelnerl H 1979 Phys. Lett. 84B 185 (original application to the Coulomb path integral) 

[io] Bohm M and Junker G 1987 J .  Math. Phys. 28 1978 
Junker G and Bohm M 1986 P h w  Lett. 117A 375 

Scientific) 

[8] 
[9] 



Ring-shaped topological defects 

Grosche C 1991 J.  Marh. Phys. 32 1984 
Duru I H 1984 Phys. Rev. D 30 2121 

[ I  11 Tonomura A et a1 1986 Phys. ReL'. Lex 56 792 

8267 

Peshkm M and Tonomurn A 1989 The AIwronocRi,hm E/@ (Berlm Spnnfer) 
[I21 MOM P M md Ferhbsch H 1953 Mefhodr ,$Thheurerml P h j s m  to1 I I  (Yes York hlcGraw-HIIIJ p 1301 
1131 McLaughlin D W and Schulmnn L S 1971 I Mofh Phjr 12 2520 
1141 Bargmm V 1947 4nn Work 48 568 
[IS] Grarador E. Cuplo-Bemido >t V and Bemido C C 1993 IWLIS Asfrrrn 37 261 

CypmBemtdo M V 1991 I .  Morh P h j s .  32 1799 
[I61 L)uboshi12 Y and Smorodinrki Ya 1978 Sot. Phjr.-IETP18 19 

Afanassle! G N and Shilov V M 1989 I .  PhJ5 A. IlaIh Gen 22 5195 
Tusie L 1963 PhJr. Let[ 5 43 
Prober D E. Ulnd Sand Chmdrasckh-har \' 198s PNC ffntwml) < o / T k y  fn1. Symp. onAnd<rron Ir~cnhzonun 

Kleinen H 1990 Purh lnregrok ~n Qunnrum M ~ c ~ n ~ s ,  Simrrncr md Poly"  Plzjrics (Singapore World 

Junker G 1990 1. Ph)s. A Murh G e t  23 U81 
6 x 0  F 1992 M S  T h m r  Unircrril) of [he Philippioes. ch I V  

1171 

1181 

1191 

(Berlm SpMger) 

Scienufic) 


